Decision Tree Classification¶

Importing the libraries¶

In [32]:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

Importing the dataset¶

In [33]:
df = pd.read_csv('Social_Network_Ads.csv')
df.head(10)
Out[33]:
Age EstimatedSalary Purchased
0 19 19000 0
1 35 20000 0
2 26 43000 0
3 27 57000 0
4 19 76000 0
5 27 58000 0
6 27 84000 0
7 32 150000 1
8 25 33000 0
9 35 65000 0
In [34]:
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values

Splitting the dataset into the Training set and Test set¶

In [35]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
In [36]:
print(X_train[0:3])
[[    44  39000]
 [    32 120000]
 [    38  50000]]
In [37]:
print(y_train[0:3])
[0 1 0]

Feature Scaling¶

In [38]:
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
In [39]:
print(X_train[0:3])
[[ 0.58164944 -0.88670699]
 [-0.60673761  1.46173768]
 [-0.01254409 -0.5677824 ]]
In [40]:
print(X_test[0:3])
[[-0.80480212  0.50496393]
 [-0.01254409 -0.5677824 ]
 [-0.30964085  0.1570462 ]]

Training the Decision Tree Classification model on the Training set¶

In [41]:
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)
Out[41]:
DecisionTreeClassifier(criterion='entropy', random_state=0)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
criterion  'entropy'
splitter  'best'
max_depth  None
min_samples_split  2
min_samples_leaf  1
min_weight_fraction_leaf  0.0
max_features  None
random_state  0
max_leaf_nodes  None
min_impurity_decrease  0.0
class_weight  None
ccp_alpha  0.0
monotonic_cst  None

Predicting a new result¶

In [42]:
print(classifier.predict(sc.transform([[30,87000]])))
[0]

Predicting the Test set results¶

In [43]:
y_pred = classifier.predict(X_test)
#print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))

Making the Confusion Matrix¶

In [44]:
from sklearn.metrics import confusion_matrix, accuracy_score
cm = confusion_matrix(y_test, y_pred)
print(cm)
[[62  6]
 [ 3 29]]
In [45]:
accuracy_score(y_test, y_pred)
Out[45]:
0.91

Visualising the Training set results¶

In [46]:
colors = ['#FA8072', '#1E90FF']
In [47]:
from matplotlib.colors import ListedColormap
X_set, y_set = sc.inverse_transform(X_train), y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25),
                     np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25))
plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(colors))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], color = ListedColormap(colors)(i), label = j)
plt.title('Decision Tree Classifier (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
No description has been provided for this image

Visualising the Test set results¶

In [48]:
from matplotlib.colors import ListedColormap
X_set, y_set = sc.inverse_transform(X_test), y_test
# Create a grid of points
X1, X2 = np.meshgrid(
    np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.25),
    np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.25)
)
# Predict for each point on the grid
Z = classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape)
# Plot the decision boundary
plt.contourf(X1, X2, Z, alpha=0.75, cmap = ListedColormap(colors) )
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
# Plot the test set points
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(
        X_set[y_set == j, 0], X_set[y_set == j, 1],
        color=colors[i], label=j
    )
# Add titles and labels
plt.title('Decision Tree Classifier (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
No description has been provided for this image