Logistic Regression¶

Importing the libraries¶
In [2]:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
Importing the dataset¶
In [3]:
df = pd.read_csv('Social_Network_Ads.csv')
df.head(10)
Out[3]:
Age EstimatedSalary Purchased
0 19 19000 0
1 35 20000 0
2 26 43000 0
3 27 57000 0
4 19 76000 0
5 27 58000 0
6 27 84000 0
7 32 150000 1
8 25 33000 0
9 35 65000 0
In [4]:
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
In [5]:
X[0]
Out[5]:
array([   19, 19000])
In [6]:
y[0]
Out[6]:
np.int64(0)
Splitting the dataset into the Training set and Test set¶
In [7]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
Feature Scaling¶
In [8]:
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
In [9]:
print(X_train[0])
[ 0.58164944 -0.88670699]

Training the Logistic Regression model on the Training set¶

In [10]:
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state = 0)
classifier.fit(X_train, y_train)
Out[10]:
LogisticRegression(random_state=0)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
penalty  'l2'
dual  False
tol  0.0001
C  1.0
fit_intercept  True
intercept_scaling  1
class_weight  None
random_state  0
solver  'lbfgs'
max_iter  100
multi_class  'deprecated'
verbose  0
warm_start  False
n_jobs  None
l1_ratio  None

Predicting a new result¶

In [11]:
print(classifier.predict(sc.transform([[30,87000]])))
[0]
Predicting the Test set results¶
In [ ]:
y_pred = classifier.predict(X_test)
print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))

Making the Confusion Matrix¶

In [13]:
from sklearn.metrics import confusion_matrix, accuracy_score
cm = confusion_matrix(y_test, y_pred)
print(cm)
accuracy_score(y_test, y_pred)
[[65  3]
 [ 8 24]]
Out[13]:
0.89

Visualising the Training set results¶

In [19]:
# Define colors for scatter plot
colors = ['#FA8072', '#1E90FF']
In [20]:
from matplotlib.colors import ListedColormap
X_set, y_set = sc.inverse_transform(X_train), y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25),
                     np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25))
plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(colors))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())

for i, j in enumerate(np.unique(y_set)):
    plt.scatter(
        X_set[y_set == j, 0],
        X_set[y_set == j, 1],
        color=colors[i],
        label=j
    )

plt.title('Logistic Regression (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
No description has been provided for this image

Visualising the Test set results¶

In [16]:
from matplotlib.colors import ListedColormap
X_set, y_set = sc.inverse_transform(X_test), y_test
# Create a grid of points
X1, X2 = np.meshgrid(
    np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.25),
    np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.25)
)
# Predict for each point on the grid
Z = classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape)
# Plot the decision boundary
plt.contourf(X1, X2, Z, alpha=0.75, cmap = ListedColormap(colors) )
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())

# Plot the test set points
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(
        X_set[y_set == j, 0], X_set[y_set == j, 1],
        color=colors[i], label=j
    )
# Add titles and labels
plt.title('Logistic Regression (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
No description has been provided for this image